Fundamentals of Transfusion Reactions

Nicole Saviano, MD Medical Director 1/10/2024

Life

Your **Mond**. Your Hospital. Your Neighbors.

Physician available 24/7 for: Practitioners with transfusion related and Blood Bank related questions and concerns

515-309-4840

Outline

- 1. Acute Hemolytic Transfusion Reaction
- 2. Delayed Hemolytic Transfusion Reaction
- 3. Febrile Non-Hemolytic Transfusion Reaction (FNHTR)
- 4. Transfusion-Related Acute Lung Injury (TRALI)
- 5. Transfusion-Associated Circulatory Overload (TACO)
- 6. Allergic Reactions

Outline

- 7. Hypotensive Transfusion Reaction
- 8. Transfusion-Associated Dyspnea (TAD)
- 9. Delayed Serologic Transfusion Reaction
- 10. Transfusion Transmitted Infection
- 11. Post Transfusion Purpura
- 12. Transfusion-Associated Graft vs. Host Disease (TAGVHD)

Acute Hemolytic Transfusion Reaction

- Rapid destruction of RBCs during or within 24 hours of cessation of transfusion.
- There are notable clinical and laboratory signs and symptoms of hemolysis.

Causes:

- Transfusion of ABO-incompatible blood
- Transfusion of ABO-incompatible
 plasma
- Non-ABO antibodies

Diagnosis

- Patient may show any of the following:
 - Fever, chills, rigors, flank pain, blood in urine, hypotension, oozing at an IV site or anuria/renal failure.
- With at least 2 of:
 - Decreased fibrinogen or haptoglobin
 - Elevated unconjugated bilirubin or LDH
 - Hemoglobinemia or hemoglobinuria
 - Plasma discoloration
 - Schistocytes and Spherocytes on peripheral blood smear examination

SCHISTOCYTES

Why does hemolysis occur:

Recipients antibody

How do we prove this?

- A positive direct antiglobulin test using AHG (anti-IgG or anti-C3).
- Positive elution test revealing an alloantibody present on transfused red blood cells.

Direct Antiglobulin Test:

Goal: Detection of IgG or complement fractions bound to patient's RBCs in vivo

Eluate:

Treatment

- STOP TRANSFUSION!!!!
- Administer vasopressors to help increase blood pressure.
- Diuresis for renal-protective resuscitation, aiming for a urine output of >/=100 ml/hr:
 - Administer IV fluids for supportive therapy
 - Administer Furosemide for intrinsic renal support
- Remember to save a sample of the unit to perform your necessary DAT

Delayed Hemolytic Transfusion Reaction

- The recipient develops antibodies to a red blood cell antigen(s) between 24 hours and 28 <u>days</u> after cessation of transfusion.
- Clinical signs of hemolysis are often present.
- Post-transfusion LDH and bilirubin levels increase and subsequently fall back to baseline in the following days.

What to look for:

- Positive DAT for antibodies that have developed between 24 <u>hours</u> and 28 <u>days</u> after cessation of transfusion AND EITHER:
- 1. Positive elution confirming an alloantibody on transfused RBC's

OR

• 2. A newly identified red blood cell alloantibody in recipient serum

OR

• Unexplained Detection of Spherocyte's on smear

Treatment

- Corticosteroids.
- IV immunoglobulin.
- Rituximab.
- Corresponding antigen negative blood for future transfusions.

Febrile Non-Hemolytic Transfusion Reaction (FNHTR)

- Most common cause is a reaction to passively transfused cytokines or leukocytes in the donated blood product.
- Fever, chills or rigors without hemolysis that occurs during/within 4 hours of cessation of transfusion.
- Cultures of the patient or the donated blood product should be negative.
- No laboratory evidence of acute hemolysis, (neg DAT)

Diagnosis

- Occurs during or within 4 hours of cessation of transfusion with either:
 - Fever (at least 38°C/100.4°F orally) and a change of at least 1°C/1.8°F from pre-transfusion temp
 - OR
 - Chills/rigors present alone.

Treatment

- Stop the transfusion.
- Administer acetaminophen/ Tylenol.

Transfusion-Related Acute Lung Injury (TRALI)

- Acute lung injury occurs within <u>6 hours</u> of cessation of transfusion.
- No evidence of acute lung injury **prior** to transfusion.

Most widely held view of the cause:

- Passively transfused HLA or HNA Ab's in <u>donor</u> <u>plasma</u> which then set off a cascade of events, leading to the attack of recipient's leukocyte Ag
- BioActive lipids suspended in plasma or storage medium of the blood product (sphingolipids found within platelet and RBC cell wall)

Things to look for:

- Hypoxemia: PaO₂ /FiO₂ less than or equal to 300 mmHg.
- O₂ saturation less than 90% on room air
- Radiographic evidence of <u>bilateral</u> pulmonary infiltrates
- No evidence of circulatory overload (left atrial hypertension).
- Mortality rate is 25%

Bilateral Pulmonary Infiltrates

Fig 1: Pre and Post transfusion X-rays of our patient with TRALI. Bilateral Lung infiltrate with pulmonary edema is an essential criteria for the clinical diagnosis of TRALI.

Treatment

- Stop transfusion.
- Provide respiratory and circulatory supportive care:
 - O₂ supplementation, mechanical ventilation.
 - Vasopressors if hypotensive.

Transfusion-Associated Circulatory Overload (TACO)

- Occurs within 12 hours of cessation of transfusion.
- Causes: The infused volume of product cannot be processed effectively by the recipient due to:
 - High rate of infusion or high volume of infusion
 - An underlying existing cardiac or pulmonary pathology.

TACO

- Evidence of acute worsening respiratory distress:
- You will need one of the following from A & B <u>AND</u> always C:
 - A. Dyspnea, cyanosis, decreased O₂ saturation values in the absence of other causes and/or
 - B. Radiographic or clinical evidence of acute worsening lung injury including:
 - Lung crackles on auscultation
 - Cough
 - Third heart sound
 - Pink sputum
 - C. Elevated BNP/NT-pro BNP (left ventricular dysfunction), elevated central venous pressure, left heart failure, fluid overload.

Cyanosis

Treatment

- Stop transfusion.
- Have patient sit up.
- Provide supplemental O₂.
- Diuretics to decrease intravascular plasma volume.
- Clinician can order volume reduced products to avoid overload complications

TRALI

Rales

.

Acute Dyspnea

Acute Pulmonary

Hypoxemia

Edema

Diffuse B/L

infiltrates

- Fever
- No circulatory overload
- EF: Normal
- BNP: <250pg/ml
- Hypotension
- Edema Fluid: Exudate
- JVP unchanged
- Transient leukopenia
- Inconsistent improvement with diuretics

TACO

- No Fever
- Circulatory overload +
- EF: Decreased
- BNP: >1200pg/ml
- Hypertension
- Edema Fluid: Transudate
- JVP may be distended
- Leukocytes may be unchanged
- Improvement with Diuretics

TRALI vs. TACO

TRALI	TACO
Signs & Symptoms	Signs & Symptoms
 Respiratory distress 	 Respiratory distress
 Tachypnea 	 Tachypnea
•Hypoxemia	•Hypoxemia
 Hypotension 	 Hypertension
 Noncardiogenic pulmonary edema 	 Cardiogenic pulmonary edema
•Fever	 Improves with diuretics
 Onset within 6 hours of transfusion 	
	Supporting Data
Supporting Data	 B/L pulmonary infiltrates on CXR
 B/L pulmonary infiltrates on CXR 	 Pretransfusion fluid overload
 Decreased WBC count 	*Elevated BNP
 Associated with HLA and/or Neutrophil 	 Increased heart size
Antibodies	 Vascular congestion

•Pulmonary wedge P > 18 mm Hg

LOYOLA UNIVERSITY HEALTH SYSTEM

Allergic Reaction

- Occurs during or within 4 hours of the cessation of transfusion.
- It is the result of an interaction of an allergen with preformed antibodies.

Allergic Reaction

- Two or more of the following occur during or within 4 hours of cessation of transfusion:
 - Hypotension
 - Generalized flushing
 - Localized angioedema including:
 - Edema of the lips, tongue or uvula, periorbital/ conjunctival region
 - Erythema including maculopapular rash, pruritis, uticaria
 - Respiratory distress (bronchospasm)

Treatment

- Stop transfusion.
- Antihistamines for hives and itching.
- Severe reactions may necessitate epinephrine, corticosteroids and respiratory support.
- Its safe to restart blood product transfusion

Anaphylactic Reaction:

Anaphylactic Reaction cont:

- Epidemiology:
 - -1 in 20,000 to 50,000 transfusions
- Mechanism:

-Sudden, systemic release of mediators such as histamine and tryptase by mast cells and basophils

- In response to IgE or IgG mediated immune reaction
- Life Threatening

Presentation:

Medical Emergency

Rapid onset- within seconds to minutes post transfusion Shock Hypotension Angioedema Wheezing Respiratory distress Allergic reaction symptoms

Allergic reaction symptoms

Prevention:

- Do not use the blood products from the donor who was the source of the reaction
- Avoid plasma transfusions when there was a previous anaphylactic reaction
- Wash the blood product (not the plasma product)
- If patient is IgA deficient, use blood products from donor who is IgA deficient

Hypotensive Transfusion Reaction

- A decline in blood pressure during or within 1 hour of cessation of transfusion.
- Hypotension is often the sole manifestation.
- Other associated symptoms may include facial flushing, dyspnea or abdominal cramping.
- All other transfusion reactions that present with hypotension must be excluded for this diagnosis.

Hypotensive Transfusion Reaction

- Adults (>/=18 years old):
 - -Drop in **<u>systolic</u>** blood pressure of >/= 30 mmHg with a total systolic blood pressure </= to 80 mmHg.
- Neonates and small infants (<1 year old or less than 12 kg body weight):
 - -Greater than 25% decline in baseline value using whichever measurement is being recorded (mean BP).
- Infants, children, and adolescents (1-18 years old):
 - Greater than 25% drop in <u>systolic</u> blood pressure from baseline.

Treatment

- Stop transfusion.
- Maintain IV access.
- Fluid bolus or vasopressors.

Transfusion Associated Dyspnea (TAD)

- Respiratory distress that occurs within 24 hours of cessation of transfusion.
- **Does not meet criteria** for TRALI, TACO or allergic reaction.
- Respiratory distress not explained by an underlying or pre-existing medical condition.

Treatment

- Stop transfusion.
- Respiratory support as needed.

Delayed Serologic Transfusion Reaction

- Development of new clinically significant antibody against red blood cells; +DAT
- Confirmed positive direct antiglobulin test (DAT) or a positive antibody screen with a newly identified RBC alloantibody.
- Absence of clinical signs of hemolysis
- Demonstration of a new, clinically significant alloantibody against red blood cells between 24 hours and 28 days after cessation of transfusion despite an adequate maintained hemoglobin response.

Treatment

 Avoidance of future donated RBC Ag

Post Transfusion Purpura

- Thrombocytopenia usually arising 5-12 days following transfusion of cellular blood components (RBC or PLT) with findings of antibodies in the patient directed against the Human Platelet Antigen (HPA) system
- Thrombocytopenia (decrease in platelet counts to less than 20% of pre-transfusion count).
- Petechial rash

Treatment:

- First line therapy is IV-Ig
- Steroids
- Plasmapheresis
- Resolves usually within 2 weeks
- Symptoms usually sudden and self-limiting

Transfusion-Associated Graft vs. Host Disease (TAGVHD)

- Caused by the introduction of a blood product from an immunocompetent donor with its corresponding competent lymphocytes **into** a susceptible immunocompromised recipient.
- These competent lymphocytes engraft, proliferate and destroy host cells

Occurs within 2 days to 6 weeks after cessation of transfused product and is characterized by:

- Rash
- Diarrhea
- Fever
- Hepatomegaly
- Liver dysfunction- elevated ALT/ AST/ Bilirubin
- Marrow dysplasia
- Pancytopenia
 AND
- Proven characteristic histologic findings on skin and marrow biopsy

Keep in mind:

 All of our products are leuko-reduced and irradiated to avoid these issues

Treatment:

- Immunosuppressive
 drugs
- Bone Marrow Transplant

Transfusion Transmitted Infection

• A bacteria, virus, parasite or other potential pathogens transmitted in donated blood to the recipient.

- Risk
 - Viruses
 - Hepatitis B virus (HBV) one in 1 million to 1.5 million (estimated)
 - Hepatitis C virus (HCV) one in 2 million to 2.6 million (estimated)
 - Human T-lymphotropic virus (HTLV) one in 2.7 million (estimated)
 - Human immunodeficiency virus (HIV) one in 1.6 to 2.3 million (estimated)

- Risk (cont.)
 - Bacteria
 - One in 50,000 to 80,000 platelet transfusions
 - Platelets are usually stored at room temperature → greater risk of bacterial growth

Treatment

- Stop transfusion.
- Start a broad spectrum antibiotics, then once cultures are obtained and culprit has been identified, start <u>specific</u> drug
- Provide cardiorespiratory support.
- Send unit to blood bank for investigation.

Transfusion Reaction Key Points:

- 1. Acute Hemolytic Transfusion Reaction
- Positive DAT within 24 hrs, signs of hemolysis
- 2. Delayed Hemolytic Transfusion Reaction
- 1 day to 1 month after Tx with a +DAT and hemolysis
- 3. Febrile Non-Hemolytic Transfusion Reaction (FNHTR)
- Fever/ chills /rigors, negative DAT
- 4. Transfusion-Related Acute Lung Injury (TRALI)
- Hypoxic, no prior hx, fever, bilateral lung infiltrates
- 5. Transfusion-Associated Circulatory Overload (TACO)
- Dyspnea with fluid overload picture
- 6. Allergic Reactions
- Angioedema with hypotension; respiratory distress

Transfusion Reaction Key Points:

- 7. Hypotensive Transfusion Reaction
- Hypotension alone
- 8. Transfusion-Associated Dyspnea (TAD)
- Respiratory distress w/o meeting TACO and TRALI criteria
- 9. Delayed Serologic Transfusion Reaction
- Ab identified against RBC with a +DAT and NO HEMOLYSIS
- **10. Transfusion Transmitted Infection**
- Fever and hypotension
- 11. Post Transfusion Purpura
- RASH and low platelets
- 12. Transfusion-Associated Graft vs. Host Disease (TAGVHD)
- Recipient is Immunocompromised whom develops hepatomegaly, marrow suppression, rash, diarrhea

THANK YOU ALL FOR YOUR TIME AND ATTENTION!!!

• QUESTIONS?

References:

- Rogers M.A.M., Rohde J.M., Blumberg N. Haemovigilance of reactions associated with red blood cell transfusion: Comparison across 17 Countries. *Vox Sang.* 2016;110:266–277. doi: 10.1111/vox.12367.
- Winqvist I. Meperidine (pethidine) to control shaking chills and fever associated with non-hemolytic transfusion reactions. *Eur. J. Haematol.* 1991;47:154–155. doi: 10.1111/j.1600-0609.1991.tb00140.x.
- CDC National Healthcare Safety Network (NHSN), Blood Safety Surveillance: <u>https://www.cdc.gov/nhsn/acute-care-hospital/bio-hemo/index.html</u>
- AABB Quick Reference Guide for NHSN Hemovigilance Module: Adverse Reaction Definitions
- <u>https://www.labce.com/spg1888347_cdc_classification_system_for_surveillance_of_tran_aspx</u>
- <u>https://www.cdc.gov/nchs/ppt/icd9/att5romanosep08.pdf</u>
- Blumberg N., Heal J.M., Gettings K.F., Phipps R.P., Masel D., Refaai M.A., Kirkley S.A., Fialkow L.B. An association between decreased cardiopulmonary complications (transfusion-related acute lung injury and transfusion-associated circulatory overload) and implementation of universal leukoreduction of blood transfusions. *Transfusion*

References cont.

- Semple J.W., Rebetz J., Kapur R. Transfusion-associated circulatory overload and transfusion-related acute lung injury. *Blood.* 2019;133:1840–1853. doi: 10.1182/blood-2018-10-860809.
- Semple J.W., McVey M.J., Kim M., Rebetz J., Kuebler W.M., Kapur R. Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies. *Crit. Care Med.* 2018;46:e452–e458
- Ibojie J., Greiss M.A., Urbaniak S.J. Limited efficacy of universal leucodepletion in reducing the incidence of febrile nonhaemolytic reactions in red cell transfusions. *Transfus. Med.* 2002;12:181–185. doi: 10.1046/j.1365-3148.2002.00370.x

